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Abstract: Endoscopic imaging allows longitudinal observation of epithelial pathologies in 
tubular organs throughout the body. However, the imaging and optical diagnosis of tubular 
biostructures such as small animal models and small pediatric organs require appropriately 
miniaturized devices. A miniaturized catadioptric flexible side-view endoscope is proposed 
with omnidirectional field of view (FOV) in the transverse direction and sub-mm-scale 
feature resolution. The FOV in the longitudinal direction is 50°. Images are unwrapped and 
stitched together to form composite images of the target by two different algorithms, 
revealing a composite FOV of more than 3.5 cm × 360°. The endoscope is well suited for 
minimally invasive rapid monitoring of thin tubular organs in pediatric patients, as well as for 
imaging of small animal disease models at near-cellular resolution. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction
Catadioptric devices, consisting of a combination of reflective and refractive elements, are 
uniquely suited for applications requiring instantaneous imaging of a panoramic field of view 
with a single sensor, and as a result they have found applications in fields as diverse as 
computer vision and navigation [1], industrial oil pipe inspection [2], and wide-angle 
surveillance [3,4], as well as in gastrointestinal imaging [5–7]. More recently, several teams 
have investigated side-viewing but non-catadioptric endoscopes for biological applications, 
such as esophageal endoscopy [8], and brain imaging [9,10]. 

In the biological sciences, as in industry, there is high demand for miniaturized imaging 
technology. A large community of researchers is involved in the development of small animal 
models of cancer in tubular epithelia such as the oral cavity [11], esophagus [12,13], and the 
colon [14–18]. There is also significant interest in micro-endoscopic imaging of the cardiac 
organs and the brain [19,20]. Small animal models allow quick and precise tailoring of 
genetic variants to reveal chemical signaling pathways, reduce the time and cost of 
experiments, and allow preclinical evaluation of potential therapeutic compounds [21]. 
Transfection of fluorescence-inducing viral vectors has allowed the fluorescent tagging of 
tumor cells for orthotopic injection into the colon wall [14–18]. Fluorescent pharmaceutical 
compounds have also been under development [22]. For the imaging of these targets in vivo 
and the full longitudinal monitoring of the tumor development cycle, miniaturized side-view 
endoscopes are necessary. Miniaturized endoscopes developed for small-animal applications 
may later be adapted for pediatric and minimally-invasive clinical applications. 

Catadioptric endoscope probes allow side-view imaging behind epithelial folds, which are 
not accessible to surgeons when standard or wide-angle endoscopes are used [23,24], 
potentially enabling the rapid detection of early-formation lesions. At present, state-of-the-art 
side-view imaging is performed by rotating a mirrored micro-endoscope probe to stitch 
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2. Device design and experimental setup 
In the application to side-view biological imaging (Fig. 1(a)), epithelial tissues such as the 
colon, esophagus, trachea and even cerebral and vascular tissues will surround an endoscopic 
probe such that the side-view probe is located at the central position of the tubular organs 
[6,29–31], thereby maintaining a known working distance. To miniaturize the probe and 
thereby minimize tissue damage, it was decided to focus on a single-fold catadioptric 
geometry. In this way, not only could the probe be miniaturized, but aberrations introduced 
by the mirror processing could be minimized, and the mirror assembly could be designed 
without an additional interior aperture. 

The standard optical model for catadioptric devices is the single-view-point design [30], 
which results in an undistorted mapping between the world frame and the camera image, 
provided that mirror geometries are selected from the conic sections [32]. Compared to other 
strategies, mapping the catadioptric device field of view to a cylindrical projection of the 
world frame, trades a loss of overall image pixels and resolution for a wider field of view and 
simultaneous imaging in multiple directions [5]. For miniaturized catadioptric devices, where 
sensor area is at a premium (the commercially available sensors used in this study had a 
sensor width of 1.2 mm on a 3 mm wide package), device resolution is primarily limited by 
the field of view (FOV) of the lens. The first goal of lens selection or design is thus to 
maximize the image of the mirror in the sensor FOV at the design working distance. Careful 
mirror selection will then minimize the area of the image sensor which captures the reflection 
of the sensor itself in the mirror. 

Three narrow-diameter, commercially available lenses were identified which met the 
required specifications of low aberration, a diameter of less than 3 mm, and a working 
distance of less than 5 mm. These were the SELFOC gradient index microlens, and the 
Sumita SEL 110 and the Sumita SEL 120 miniaturized lens assemblies. 

The mirror was designed to minimize the field of view which reflected the lens, and for 
this purpose a parabolic geometry was found to be superior to spherical or hyperbolic 
geometries. The mirrors shown in Table 1 were fabricated of unprotected aluminum, and 
image quality was determined qualitatively, based on direct comparison of resolved features 
from identical printed cylindrical targets, as shown in Fig. 2. Conical mirror geometries show 
high astigmatism, due to their previously observed large birefringence and high field 
distortion [29]. For spherical and parabolic mirrors, a lower radius of curvature results in 
higher-resolution images, but also reduces the field of view. Best image quality was achieved 
by pairing a SEL 120 lens assembly (Sumita, Japan) with a parabolic mirror of focus 0.172 
mm and diameter 2 mm (Table 1 and Fig. 2). 

Mirrors were fabricated of unprotected aluminum by an ultraprecise machining process 
(K-Bio Health, Osong, Korea). Tolerances for mirror manufacture were ± 0.003 mm. 

Lens and mirror mounts which were fabricated by additive manufacturing were used to 
immobilize lenses and mirrors relative to a transparent quartz tube of fixed length, as well as 
relative to the image sensor, as shown in Fig. 1(b). Representative mirror mount and lens 
mount schematics are shown in Fig. 1(d) and 1(e), respectively. Mirror mounts had diameter 
matching that of the quartz or acryl tube to be used (OD = 5.00 mm), with an extrusion which 
fit snugly within the tube (ID = 3.00 mm) and around the mirror (Dm in Table 1), with 
tolerances of t = 0.10 mm. Lens mounts (length 28.00 mm) contained a hollow chamber for 
the sensor and integrated circuit (DIC = 5.00 mm), a hole which fit snugly around the lens 
assembly (DL = 1.00 mm for SELFOC, 1.2 mm for SEL110, and 2.2 mm for SEL120), and 
extrusions to fit snugly around and within the tube (OD and ID, respectively). Six additional 
holes of radius 0.5 mm allowed for the draining of fluids during manufacture. Lens mounts 
were fabricated on a Formlabs Form2 stereolithographic (SLA) printer using white 
photopolymer resin (FLGPWH03) and grey resin (RS-F2-PRGR-01), followed by an 
isopropyl alcohol rinse to achieve a print resolution of 0.05 × 0.05 × 0.025 mm. Mirror 
mounts were fabricated on a ProJet 3500 SD printer using translucent VisiJet M3 Crystal 
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Table 1. Specifications of the mirrors 

Parameters Cone mirror 
Ball 

mirror 1 
Ball 

mirror 2 
Ball 

mirror 3 
Parabolic 
mirror 1 

Parabolic 
mirror 2 

Material Protected Aluminum Unprotected Aluminum 

Diameter Dm (mm) 2.00 1.07 1.45 2.00 2.00 2.00 

Height (mm) 1.00 0.535 0.725 1.00 1.45 2.20 

Focus or radius 
(mm) 

n/a 0.535 0.725 1.00 0.172 0.114 

Table 2. Specifications of the chip sensor 

Parameters Specifications 

Supply Voltage 2.8 V 

Chip size 2.64 mm × 2.22 mm x 0.69 mm 

Pixel size 2.5 µm × 2.5 µm 

Bit rate 24 MHz 

Resolution 640 × 480 

3. Results and discussion 
For the clinical application of catadioptric imagers, it is desirable to create cylindrical 
projections of the initial images and to composite those images together into cylindrical 
composites of the target tubular biosystem. Figure 4 shows a demonstration of two different 
versions of this unwrapping algorithm and image composition process. As the probe is moved 
down a cylindrical surface, images are captured, as shown schematically in Fig. 4(a). In the 
first process, these images are unwrapped to a cylinder individually using a polar coordinate 
transformation. The unwrapped images are then composited to obtain a larger image using a 
panorama stitching algorithm [35]. Figure 4(b) shows the unwrapped grid template images, 
while in Fig. 4(c), the grids are combined into a composite image. This technique is 
advantageous when the movement of the probe is not smooth, but it is limited by the 
requirement that features for stitching be comparable between images. 

A second method for image unwrapping allows for the automatic retrieval of a cylindrical 
image from video. A single line of the composite image is interpolated from a circular region 
of each frame of an endoscopy video, giving a very quick and feature-independent unwrapped 
cylinder. Figure 4(d) shows this counterclockwise interpolation along a circular region in 
each frame to give a composite unwrapped cylindrical image (Fig. 4(e)). 

Several distortions observed in actual images show difficulties which are not encountered 
in simulated images, namely that the aspect ratio of features in the image depends on the 
distance from the feature to the mirror. This can result in distortion when using non-radial (or 
improperly centered) imaging targets. 
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Fig. 6. Slant edge derivation of modulation transfer function. (a) Raw image. (b) MTF. 

The fabricated endoscope was further tested by insertion into a pediatric vascular 3D-
printed model mimicking a real congenital heart disease patient. A continuous video was 
captured while the probe was removed from the cardiac phantom. Following the method from 
Fig. 4(e) and 4(f), a circular section (red dashes) was interpolated from each frame into a 
cylindrical image, as shown in Fig. 7(a). The probe clearly captured diverging arteries (blue 
arrows) in the original video (Fig. 7(b)), as well as in the unwrapped image (Fig. 7(c)). The 
well-focused texture of the vascular phantom can be seen in the unwrapped image. The 
obtained image can be re-wrapped around a 3D model for a fly-through examination of the 
cardiac phantom, as shown in Fig. 7(d). This is the first realistic phantom image captured by a 
miniaturized catadioptric endoscope probe. 

Fig. 7. Cylindrical imaging of a pediatric cardiac phantom. (a) Initial frame with overlaid 
extracted circular imaging region (red dash). (b) branching of artery is observed in the 
phantom (blue arrow). (c) The unwrapped cylindrical image, with the first frame imaging 
region marked (red dash). The imaging direction arrow (red) matches that in (a). (d) The image 
re-wrapped onto a cylinder in 3D modelling software for a fly-through examination. 
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4. Conclusion
We report on the realization of a miniaturized flexible catadioptric sensor capable of 
panoramic view and composite image generation, with applications to pediatric diagnosis and 
small animal model endoscopy. The device performance was evaluated theoretically and 
experimentally, showing efficient performance compared to previously published larger 
prototypes, and significant performance given the miniaturized device type. Following 
simulations, MTF was calculated to be above 0.2 at 25 lp/mm. Field of view was 50° by 360°, 
which is exceptional for a side-view device. The device prototype is demonstrated in a 
pediatric cardiac phantom to give acceptable images in a packaged diameter of 5 mm, and 
may be further miniaturized by suitable packaging. In short, this family of miniaturized 
single-fold catadioptric devices is expected to be highly useful for the rapid diagnosis and 
treatment of thin tubular biostructures. 
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