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Technology has been developed to monitor the differentiation process of human mesenchymal stem 
cells (hMSCs) into hepatocyte-like cells (HLCs) and hepatic progenitor cells (HPCs). These cell lineages, 
differentiated from MSCs, are ethically unproblematic and are gaining attention as promising cell-based 
therapies for treating various liver injuries. High-sensitivity, label-free, real-time monitoring technologies 
integrated with artificial intelligence have been used to evaluate and optimize cell differentiation for enhancing 
the efficiency of cell therapy delivery. Using an Au-ZnO nanorod array-based surface-enhanced Raman 
scattering (SERS) sensing chip, cell differentiation from hMSCs to HPCs and HLCs was nondestructively 
monitored through spectral analysis of cell secretions. Principal component extraction was employed to 
reduce variables, followed by discriminant analysis (DA). The application of principal component–linear 
discriminant analysis (PC-LDA), an artificial intelligence algorithm, to spectral data enabled clear grouping 
of hMSCs, HPCs, and HLCs, with monitoring accuracies of 96.3%, 98.8%, and 98.8%, respectively. Spectral 
changes observed during the differentiation from hMSCs to HPCs and from HPCs to HLCs over several 
days demonstrated the effectiveness of SERS combined with machine learning algorithm analysis for 
differentiation monitoring. This approach enabled real-time, nondestructive observation of cell differentiation 
with minimal sample labeling and preprocessing, making it useful for sensing differentiation validation 
and stability. The machine learning- and nanostructure-based SERS evaluation system was applied to the 
differentiation of ethically sourced MSCs and demonstrated substantial potential for clinical applicability 
through the use of patient-derived samples.

Introduction

  There has been growing interest in using stem cells to treat liver 
diseases such as liver fibrosis, cirrhosis, and hepatocellular car-
cinoma, highlighting their great potential [  1 ]. Stem cells have 
demonstrated significant efficacy in reducing inflammation, 
fibrosis, and apoptosis; enhancing hepatocyte proliferative activ-
ity; and repairing damaged liver tissue [  2 ,  3 ]. The application of 
mesenchymal stem cells (MSCs) is particularly promising due 
to the absence of ethical concerns. MSCs are pluripotent and can 
differentiate into various cell types, including hepatocytes, chon-
drocytes, osteocytes, and adipocytes, facilitating the replacement 
and repair of dead cells in damaged organs. Furthermore, MSCs 
play a crucial role in signal transduction and immune regulation 
by secreting growth factors such as vascular endothelial growth 
factor and keratinocyte growth factor, as well as cytokines.

  Hepatic progenitor cells (HPCs), which are bipotent cells, 
can differentiate into hepatocytes and cholangiocytes within 
the liver [  4 ]. They contribute to the recovery of liver function 
in hepatic diseases by replenishing the depleted hepatocyte 
population and differentiating into functional hepatocytes [  5 ,  6 ]. 
Consequently, HPCs are often regarded as promising candidates 
for liver disease treatment due to their ability to regenerate both 
hepatocytes and bile duct cells, depending on the type of liver 
damage [  7 ]. Maintaining the bipotent state of HPCs serves as a 
valuable indicator for their identification and determines their 
optimal therapeutic application based on the injury type.

  Liver transplantation, conducted based on severity due to 
the shortage of suitable donors, requires patients to use life-
long immunosuppressive medications [  8 ]. Hepatocyte-like 
cells (HLCs) derived from stem cells resemble hepatocytes in 
their morphology and express liver-specific genes, offering 
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an alternative to liver transplantation. These cells perform 
essential liver functions, such as glycogen storage and albu-
min synthesis [  9 ]. However, similar to liver transplantation, 
there is a scarcity of suitable donors for liver cell isolation, and 
the quality of isolated hepatocytes varies. Additionally, cryo-
preservation, the only method for long-term storage of hepa-
tocytes, inevitably leads to changes in cell structure and function 
upon thawing [  10 ,  11 ]. Therefore, ensuring a consistent supply 
of high-quality hepatocytes remains a significant challenge for 
cell therapy in liver diseases.

  Accurately characterizing cells is crucial for selecting the 
most effective treatment cells based on the disease type and 
severity. Limitations in stem cell use include variability in thera-
peutic efficacy and potential side effects due to the presence of 
undifferentiated or other cell types during differentiation [  12 ]. 
Hence, thorough monitoring of stem cell differentiation is 
essential to ensure safety and optimize therapeutic strategies.

  Common monitoring techniques, such as reverse transcrip-
tion quantitative polymerase chain reaction (RT-qPCR), flow 
cytometry, Western blotting, and immunostaining, are fre-
quently employed to assess the expression of specific cell mark-
ers. However, these techniques necessitate cell destruction, 
rendering the cells unusable for therapeutic purposes and limit-
ing validation to a restricted population when cells are pro-
duced in large quantities [  13 ,  14 ].

  Raman spectroscopy, an analytical method based on inelastic 
photon scattering due to molecular vibrations, holds promise 
for monitoring stem cell differentiation. This technique gener-
ates unique spectra by detecting energy dispersion from laser-
irradiated samples, reflecting molecular composition and structure. 
The multiple peaks in the spectra provide information on various 
molecules. Additionally, recent advancements in nanostructured 
metal technology have significantly enhanced Raman signals. 
Specifically, surface-enhanced Raman spectroscopy (SERS) 
has dramatically improved signal sensitivity by amplifying signal 
intensity through the interaction between localized surface plas-
mon resonance on the metal surface and molecular vibrations 
of the sample. SERS thus allows for the acquisition of Raman 
spectra at lower analyte concentrations.

  Our previous studies on kidney diseases demonstrated that 
Au-ZnO nanoparticle-based SERS is reliable and highly sensi-
tive for biomolecule detection [  15 ,  16 ]. Furthermore, SERS is 
effective for the early detection and diagnosis of various cancers 
and atherosclerosis through blood or urine tests [  17 ,  18 ], and 
its efficacy has been demonstrated in diagnosing rejection-
related diseases in clinical samples [  19 ]. This diagnostic method 
utilizes the characteristics of Au-ZnO nanomaterials, where 
nanometer biomarkers are filtered via the nanoporous structure 
of the sensing chip, achieving high-sensitivity detection through 
the localized surface plasmon resonance phenomenon acting 
on trapped molecules. When used for diagnosis based on nano-
meter markers, these biomarkers are widely distributed in a 
liquid sample, improving the probability of detection even in a 
single small drop. Various biomarkers exist in blood depending 
on size, including circulating cells (tens of micrometers), red 
blood cells (8 μm), bacteria (1 μm), exosomes (less than a few 
hundred nanometers), and proteins. By targeting nanometer 
markers, noise signals from nanofiltering can be substantially 
suppressed.

  Various cell metabolites, including extracellular vesicles, 
exosomes, nucleic acids, and cytokines, are released during cell 
culture and differentiation and can serve as biomarkers for 

in vitro evaluation. Utilizing nanobiomarkers for in vitro cell 
evaluation and monitoring may facilitate highly sensitive analy-
ses with minimal sample volumes. Particularly, when cell func-
tion and differentiation can be evaluated through secreted 
biomarkers or proteins, nondestructive cell analysis becomes 
feasible, allowing follow-up monitoring and the use of cells as 
therapeutic agents.

  Advances in artificial intelligence (AI) technology and algo-
rithm development have led to its widespread application across 
the medical industry, including in medical image processing, 
risk analysis, and new drug development [  20 –  22 ]. However, 
most AI diagnostic methods are based on medical images, leav-
ing other medical data largely unexplored. Therefore, the appli-
cation of AI technology must be expanded. Machine learning 
technology can be used to improve diagnostic accuracy, develop 
sensitive detection techniques, and provide evidence for analyz-
ing and automating multidimensional variables. These features 
make Raman spectroscopy particularly well suited for AI appli-
cation. However, because Raman spectroscopy data differ from 
traditional image-derived data, customized research on Raman 
spectroscopy technology is essential.

  In this study, we established culture and differentiation con-
ditions for human MSCs (hMSCs), HPCs, and HLCs for liver 
disease therapeutics. Validation was performed using conven-
tional biomarker detection methods. Nanobiomarkers were 
filtered from in vitro samples of culture media and cell secre-
tions, and SERS signals for molecules trapped in the nanopo-
rous structure were measured. The effectiveness of spectral 
monitoring technology was examined using a machine learn-
ing algorithm applied to the obtained Raman spectra, as shown 
in Fig.  1 .           

Materials and Methods

Conditions of hMSC culture and differentiation into 
HLCs and HPCs
  hMSCs were isolated as described in our previous study [  23 ]. 
Cells were seeded onto 0.1% gelatin-coated culture plates 
and cultured in Dulbecco’s modified Eagle’s medium/F12 
(Gibco, NY, USA) supplemented with 10% fetal bovine serum 
(Gibco), 10 ng/ml fibroblast growth factor 2 (PeproTech, Rocky 
Hill, NJ, USA), 1% nonessential amino acids (Gibco), 1% antibiotic–
antimycotic (Gibco), and 0.1 mM 2-mercaptoethanol (Sigma-
Aldrich, St. Louis, MO, USA).

  The hepatocyte differentiation process was carried out in 2 
stages as described previously [  24 ]. Briefly, the stem cells were 
placed on a 6-well plate coated with 0.1% gelatin. After 2 d, the 
culture medium was replaced with Step-1 medium, which con-
sisted of Iscove’s modified Dulbecco’s medium (Gibco) supple-
mented with 0.1% polyvinyl alcohol (Sigma-Aldrich), 10 mM 
nicotinamide (Sigma-Aldrich), 20 ng/ml human hepatocyte 
growth factor (PeproTech), 10 ng/ml fibroblast growth factor 2, 
2 μM 5-azacytidine (Sigma-Aldrich), 0.1 μM dexamethasone 
(Sigma-Aldrich), 1% insulin–transferrin–selenium (Gibco), 
3 μM CHIR99021, 20 ng/ml human epidermal growth factor 
(PeproTech), and 10 μM Fasudil (AdooQ Bioscience, Irvine, 
CA, USA). After 7 d, for hepatic maturation, the Step-1 
medium was replaced with the Step-2 medium, which con-
sisted of Iscove’s modified Dulbecco’s medium supplemented 
with 1 μM dexamethasone, 1% insulin–transferrin–selenium, 
20 ng/ml Oncostatin M (PeproTech), 20 ng/ml human hepato-
cyte growth factor, and 10 μM Fasudil for 14 d.   
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Total RNA extraction, RT-qPCR, and detection of 
secreted human albumin
  Total RNA was extracted from all samples using a Qiagen 
RNeasy Mini Kit (Qiagen, Hilden, Germany) following the 
manufacturer’s instructions. Approximately 1 × 106 cells were 
used, and lysis solution (QIAzol, Qiagen) was applied to extract 
mRNA from the samples. RNA concentration and purity were 
quantified spectrophotometrically using a NanoDrop (ND-
2000, Thermo Fisher Scientific, Waltham, MA, USA).

  cDNA synthesis was performed using the ReverTra Ace 
qPCR RT Master Mix (Toyobo, Osaka, Japan), and RT-qPCR 
was conducted with 5× HOT FIREPol EvaGreen qPCR Supermix 
(Solis BioDyne, Tartu, Estonia) using a CFX Connect Real-Time 
PCR Detection System (Bio-Rad Laboratories, Hercules, CA, 
USA). Relative expression values were calculated and normal-
ized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
expression using the ΔΔC t method. Primer sequences are listed 
in Table  1 . 

  The presence of human albumin was determined using an 
Albumin Human ELISA Kit (Thermo Fisher Scientific) following 
the manufacturer’s recommendations. Albumin secretion was 
normalized to the culture days and total cell numbers.   

Synthesis of ZnO nanostructure-based and 
Au-coated SERS sensing chip
  To isolate nanosized biomarkers from the cell culture medium 
and amplify Raman signals, a SERS chip with a nanoporous 
structure was fabricated. The SERS chip consisted of ZnO 
nanorods as the base structure, onto which gold was coated. A 
ZnO thin film acting as a seed layer was deposited on a silicon 
wafer to a thickness of 30 to 40 nm. ZnO nanorods, with lengths 
ranging from 400 to 600 nm and diameters of approximately 
50 nm, were grown on this substrate using a hydrothermal 
method. The ZnO-seeded silicon substrate was immersed in a 
solution of 25 mM zinc nitrate hexahydrate (Sigma-Aldrich) 
and 25 mM ammonium hydroxide (Sigma-Aldrich) in 50 ml 

Fig. 1. Schematic diagram of the experiment illustrating the identification of nanobiomarkers in the secretion of human mesenchymal stem cells (hMSCs), hepatic 
progenitor cells (HPCs), and hepatocyte-like cells (HLCs) utilizing surface-enhanced Raman spectroscopy (SERS) integrated with machine learning algorithms for 
translational research.
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of deionized water at 90 °C for 50 min. The substrate with the 
grown ZnO nanorods was coated with a 200-nm gold layer in 
a thermal evaporator (Alpha Plus, Gyeongbuk, South Korea), 
as monitored by a thickness gauge. The morphology and 
nanogap dimensions of the fabricated Au-ZnO nanorods were 
examined using field-emission scanning electron microscopy 
(S-4700, Hitachi, Tokyo, Japan) at an acceleration voltage of 
10 keV.   

Raman spectrum acquisition and  
postprocessing of signals
  A 5-μl aliquot of cell culture secretion was deposited onto the 
prepared SERS chip, which was then left in a clean hood for 
approximately 30 min to allow the biomarkers to diffuse into the 
nanogaps. The SERS chip with the diffused sample was loaded 
into a microscope (IX-73, Olympus, Tokyo, Japan) equipped with 
a Raman spectrometer (FEX-INV, WEVE, Seoul, South Korea), 
and a 785-nm laser was used to acquire Raman spectra. The 
Raman signal was calibrated using a 512 cm−1 peak from a Si 
crystal standard sample. For each cell sample group, 20 spectra 
were obtained from a single drop, covering a spectral range of 
350 to 2,400 cm−1, with data acquired in 946 steps. Background 
noise from the raw spectra was removed using fifth-order poly-
nomial fitting, and the signal was smoothed using the Savitzky–
Golay method. The average spectrum and standard deviation for 
each sample group were plotted and compared.   

Statistical analysis of signals and evaluation of 
classification using machine learning algorithms
  Principal components analysis (PCA) was applied to reduce 
the dimensionality of the Raman spectral data, condensing 
the 946-step spectral data into 150 components ordered by the 
highest variability. Based on the validation results of the 
hMSC, HPC, and HLC groups, true labeling was applied, and 
predictions were made from the Raman signal data patterns 
to determine the accuracy of cell culture and differentiation. 
Linear discriminant analysis (LDA) was performed using the 
principal components as variables, and the data distribution 
in the LDA space and confusion matrix was plotted and pre-
sented as analysis results. Additionally, receiver operating 
characteristic (ROC) curves were drawn based on sensitivity 
and specificity, with accuracy measured by the area under 
the ROC curve (AUC). PCA and DA were conducted using 
XLSTAT 2022 software (Paris, France), and all graphs were 
plotted using Origin 2018 software (OriginLab, Northampton, 
MA, USA).    

Results

Description and validation of hMSCs, HPCs, and 
HLCs by group
  Before monitoring hepatic differentiation using the Raman 
signal, we induced hMSCs to form HLCs and validated this 
differentiation using molecular experimental methods such as 
RT-qPCR and human albumin enzyme-linked immunosorbent 
assay (ELISA). The shape of differentiated cells changed from 
fibroblast-like to ovoid, and the cells exhibited a hepatocyte-like 
morphology on differentiation day 21 (Fig.  2 A to C). In addi-
tion to observing changes in morphological characteristics, we 
evaluated differentiation efficiency by detecting hepatocyte-
related genes, such as ALB, P450 enzyme (CYP3A4), and hepa-
tocyte nuclear factors (HNF4A and HNF1A) using RT-qPCR. 
The mRNA levels of all hepatocyte-related genes were signifi-
cantly up-regulated in HLCs on differentiation day 21 (P < 
0.001; Fig.  2 D). Moreover, albumin secretion levels were sig-
nificantly increased (P < 0.001; Fig.  2 E). These results validated 
that the hMSCs had differentiated into HLCs.        

  As described above, molecular analyses, such as RT-qPCR 
and ELISA, have been most commonly used to evaluate the effi-
ciency of stem cell differentiation [  25 ]. However, existing molec-
ular analyses require various experimental settings, and real-time 
and follow-up monitoring are impossible because the differenti-
ated cells are consumed during the analysis. Moreover, since it 
takes from 4 h (ELISA) to over 2 d (P450 enzyme activity test) 
to verify differentiation efficiency, molecular analyses have the 
disadvantage of not allowing a quick response to incorrect 
differentiation. In particular, the PCR measurement process 
involves sampling and lysing the sample cells to extract mRNA 
and obtain genetic information. However, the cells consumed 
during the analysis cannot be used therapeutically, and PCR 
alone captures only genetic information, making it difficult to 
obtain insights into cellular metabolic activities and functions 
such as detoxification. Therefore, functional evaluation of liver-
like cells is performed by detecting albumin, urea, and P450 
through concurrent measurement of cell secretions using ELISA. 
In contrast, liver progenitor cells (HPCs) lack inherent functions 
and known hepatic roles, and to date, no data on vital activities 
or specific functions have been accumulated.

  Although empirical information regarding the presence of 
differentiated cells can be provided by monitoring HPCs and 
hepatic-like cells (HLCs) using liver-related genetic markers 
(Fig.  2 D), there remains an absence of data on cell utility and 
specific secretions. By accumulating information on secretions 
in addition to genetic data, it is possible to build empirical data 

Table 1. Primer sequence list for real-time PCR detection for each gene

Gene name

Sequences

Forward Reverse

 ALBUMIN  CACAGAATCCTTGGRGAACAGG  ATGGAAGGTGAATGTTTCAGCA

 CYP3A4  TTTTGTCCTACCATAAGGGCTTT  CACAGGCTGTTGACCATCAT

 HNF4A  CAGGCTCAAGAAATGCTTCC  GGCTGCTGTCCTCATAGCTT

 HNF1A  TGGGTCCTACGTTCACCAAC  TCTGCACAGGTGGCATGAG
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that allow for multifaceted evaluation of cells, as well as leverag-
ing the rapid monitoring capability of the SERS technique. 
Therefore, to overcome the limitations of molecular analysis 
methods, SERS technology was employed to evaluate stem cell 
differentiation.   

Obtaining SERS signals and peak assignments 
according to individual cell culture conditions
  The approach for detecting nanobiomarkers in liquid samples, 
as shown in Fig.  1 , involves placing a one-drop sample on the 
prepared nanoporous SERS chip, which is then used to obtain 
Raman spectral signals. The SERS sensing chip is composed of 
vertically or slightly tilted arrays of Au-ZnO nanorods on a Si 
wafer, and the liquid sample is placed as a 5-μl droplet on a chip 
surface area larger than 1 × 1 cm. The droplet on the sensing 
chip surface maintains its form because of surface tension, and 
nanobiomarkers within the liquid sample diffuse concentrically 
between the nanostructures’ gaps (bottom photo in Fig.  1 ). 
When the laser is irradiated onto the area where nanobiomark-
ers have been filtered and diffused, the Raman scattered light 
shows enhanced signals only within the tens of nanometer gaps. 
This signal corresponds to secretions produced during the cell 
culture process, and the Raman signals are not affected even if 
large substances, such as cells and vesicles, are introduced dur-
ing the measurement process. The surface-enhanced Raman 
signals of secretions derived from the basal medium and cell 
cultures of hMSCs, HPCs, and HLCs according to each hepatic 
lineage are plotted in Fig.  3 A to C. In these plots, bold lines 

represent the average spectra obtained by averaging 40 spectra, 
with regions within the standard deviation shaded in light 
translucent color. The peaks originating from biomarkers are 
marked with vertical bars in each spectrum plot, and the 
Raman shift values are labeled for those peaks. The peak assign-
ments, indicating the chemical information of biomaterials 
from which these signals are derived, are summarized in Table 
 2  [  26 –  40 ]. In Table  2 , the main peaks are consolidated to allow 
for the identification and verification of overlap across different 
cell types. hMSCs uniquely exhibit peaks corresponding to the 
C–N bond (1,130 cm−1 ), CH deformation (1,320 cm−1 ), and 
amide II (1,544 cm−1). Meanwhile, HPCs display peaks specific 
to proline (793 cm−1), phenylalanine (1,030 cm−1), and amide 
I (1,685 cm−1). In contrast, no unique peaks are observed for 
HLCs. Notably, since there are no remarkable peak differences 
in the spectral patterns before and after differentiation within 
each group, there is a necessity for pattern recognition and 
classification through machine learning algorithms.           

Application of machine learning algorithms for 
evaluating the accuracy of cell culture monitoring
  To examine the AI recognition performance of the spectral 
signals, DA was conducted to differentiate the cases shown in 
Fig.  3 A to C. The spectral range of 350 to 2,400 cm−1 was sam-
pled in 946 steps, and reduction to 100 variables was achieved 
using PCA. For PCA-based dimensionality reduction of the 
spectra (Fig.  3 A to C), no additional preprocessing or adjust-
ment of the spectral range was performed. The 890 to 905 cm−1 

Fig. 2. Validation of hepatic differentiation from hMSCs to HLCs. Cell morphology during each (A) hMSC, (B) HPC, and (C) HLC differentiation process. (D) RT-qPCR analysis 
of hepatocyte-related genes in each cell group. (E) Detection of human albumin secretion in cells and basal medium for each differentiation step using enzyme-linked 
immunosorbent assay. *P < 0.05; **P < 0.01; ***P < 0.001. (F) Cell differentiation schedule and evaluation timing.
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region of the spectrum showed a significant deviation unrelated 
to the cell groups, whereas other regions exhibited highly repro-
ducible patterns. The principal component (PC) numbers were 
sorted in ascending order according to the size of the variance, 
with earlier-ranking PCs being less causally related to distin-
guishing each cell group. These reduced variables were used to 
perform LDA, and the data distribution in the PC-LDA1, 2 
plane was confirmed, as shown in Fig.  3 D. The data for the basal 
medium and corresponding culture secretions at each cell stage 
were closely distributed, allowing for visual comparison of their 
spectral shapes. As shown in Fig.  3 E, PC-LDA3–5 serve as cri-
teria for determining the culture status of HPCs, hMSCs, and 
HLCs, respectively. Ultimately, the base- and cell-specific 
grouping of the 6 cases was achieved by reducing the variables 
to a 5-dimensional space represented by PC-LDA1–5. The con-
fusion matrix derived from the PC-LDA showed a perfect 
match between the true and predicted labels. In addition, the 
cross-validation results demonstrated the generalization capa-
bility of PC-LDA (Fig.  3 F), with a high probability of matching 
true and predicted labels, achieving an accuracy of 93.75%.

  To evaluate the prediction accuracy for cell culture based 
on the basal medium, as illustrated in Fig.  4 , accuracy assess-
ment was performed. The data distribution for each case is 
depicted in Fig.  4 A to C, and quantitative accuracy obtained 
using 30 PCs was 96.3%, 98.8%, and 98.8% for hMSCs, HPCs, 
and HLCs, respectively. In all cases, the significance level was 
 P < 0.0001. Figure  4 D to F shows ROC curves plotted while 
increasing the number of PCs used in DA to 1, 5, 10, 20, and 
30. The AUC values for each ROC curve are also presented to 
show changes in accuracy improvement. The spectra used to 

derive the mean and standard deviation shown in Fig.  3 A were 
applied to the machine learning algorithm PC-LDA, and the 
accuracy of the low-dimensional data distribution and dis-
crimination between base media and cell culture secretion is 
demonstrated in Fig.  4 A. Biomolecules contributing to the 
spectral pattern formation (Fig.  3 A) correspond to those of 
hMSCs listed in the third column of Table  2 , which similarly 
contribute to the accuracy (Fig.  4 A). The biomolecules contrib-
uting to Fig.  4 B and C can be referenced from HPCs and HLCs 
in Table  2 , respectively.        

  In PCA, standardization of the entire spectrum and extraction 
of PC vectors were conducted without distinguishing between 
cell groups. PCs 1 to 3 account for 72.45% of the total variability, 
indicating a substantial occupation by these top PCs. Furthermore, 
the PC-LDA conducted on the entire cell group reveals that these 
PCs 1 to 3 significantly contribute to classification, with P values 
<0.0001, as shown in Fig.  3 D to F. In contrast, individual clas-
sifications depicted in Fig.  4  show that the sum of P values for 
PCs 1 to 3 is 0.499 for hMSCs, 0.112 for HPCs, and 0.708 for 
HLCs, indicating lower variability occupation in monitoring 
culture and differentiation within each cell group. Achieving high 
accuracy through PC-LDA implies that the machine learning 
algorithm successfully extracted crucial classification patterns 
from minor spectral differences.   

Verification of SERS assessment validity for 
monitoring cellular differentiation processes
  To monitor the differentiation of hMSCs to HPCs and from 
HPCs to HLCs, cell secretions were collected on days 2, 4, 

Fig. 3. Surface-enhanced Raman spectra of the secretion, with basal medium as the control group, for (A) cultured hMSCs, (B) differentiated HPCs, and (C) HLCs. The average 
spectrum is plotted as a bold line, with the standard deviation represented as a shaded area of the same color. Main peaks are indicated with semi-transparent colored bars 
along with their peak values, and peak assignments are shown in Table 2. (D) Data distribution of the overall SERS signals for each differentiation stage in the principal 
component–linear discriminant analysis (PC-LDA) 1,2 space. (E) Cell sample groups well discriminated using PC-LDA 3, 4, and 5, respectively. (F) Confusion matrix for the 
cross-validation results of SERS signals classified using the PC-LDA machine learning algorithm.
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and 7, and SERS signals were obtained. As shown in Fig.  5 A 
and D, the spectra for each day were overlapped and plotted, 
with each bold line representing the average spectrum of 20 
data points and the standard deviations shaded in the same 
color. These spectral data are illustrated as distributions in 
the PC-LDA space in Fig.  5 B and E, and confusion matrices 
shown in Fig.  5 C and F. The distributions of the data in Fig. 
 5 B and E revealed very clear grouping for each day, with data 
within each group closely distributed compared to the dis-
tance between group centers. These results indicate that fine 
stage changes can be monitored, suggesting that accuracy for 
each time point is high.        

  The cell secretions used for classification in Fig.  3  are sam-
ples collected at the final stages after 2 d of culture and subse-
quent 7 and 14 d of differentiation in different base environments 
for hMSCs, HPCs, and HLCs. In contrast, Fig.  5  demonstrates 
differences in secretions obtained at 2- to 3-day intervals, 
enabling more detailed temporal monitoring. Specifically, Fig. 
 5 A and D shows that certain spectral regions sequentially 
decrease over time, indicating that Raman signals from nano-
biomarkers serve as credible indices for monitoring stem cell 
differentiation. Regions showing sequential changes include 
365 to 440, 485 to 675, 730 to 970, and 1,515 to 1,645 cm−1 for 
hMSCs differentiating to HPCs, while the 720 to 970 cm−1 
range is pronounced for HPCs differentiating to HLCs. These 
findings, highlighted by the sequential changes from SERS 
chips upon dropping the secretion samples, demonstrate the 

self-filtering characteristics of nanobiomarkers and validate the 
feasibility of using SERS for monitoring differentiation.    

Discussion
  The liver possesses remarkable regenerative capabilities; however, 
in cases of chronic disease or severe damage, natural regeneration 
may be inadequate to fully restore its function. Various liver con-
ditions, such as chronic hepatitis B, chronic hepatitis C, nonal-
coholic steatohepatitis, alcoholic liver disease, and cirrhosis, can 
cause irreversible liver damage, often requiring liver transplanta-
tion and potentially progressing to liver cancer. Transplanted 
livers have a high risk of immune response-related rejection, and 
ensuring the safety of developing liver therapeutics requires 
extensive time. Consequently, HLCs and HPCs have emerged as 
promising cell therapies for treating these diseases. HLCs con-
tribute to liver function recovery by replacing or supporting 
damaged liver cells, whereas HPCs, capable of differentiating into 
both hepatocytes and cholangiocytes, promote the regeneration 
of damaged liver tissue. The homing ability of liver-derived cells 
makes HPCs and HLCs attractive for cell therapies, allowing 
them to be targeted to the liver without surgical intervention.

  The development of these cell therapies begins with an 
in vitro stage, where the technology to produce HLCs and HPCs 
in sufficient quantity and of high quality is crucial. Subsequent 
steps focus on ensuring transplantation efficacy and safety 
by enhancing posttransplantation cell engraftment rates and 

Table 2. Peak assignment of Raman spectra obtained from hepatic lineage cells

Peaks (cm−1) Assignment Related cell types Ref.

 456  L-Tryptophan  HPCs, HLCs [26]

 521  S–S disulfide stretching in proteins  hMSCs, HPCs, HLCs [27,28]

 582  Succinic acid  hMSCs, HPCs, HLCs [26]

 640  Tyrosine  hMSCs, HPCs, HLCs [29,30]

 687  Succinic acid  hMSCs, HPCs, HLCs [26]

 776  Phosphatidylinositol  hMSCs, HLCs [28,31]

 793  Proline  HPCs [26]

 890–905  C–C skeletal of backbone and protein  hMSCs, HPCs, HLCs [28,32]

 1,000  Symmetric ring breathing of phenylalanine  hMSCs, HLCs [16,18]

 1,030  C–H bending of phenylalanine  HPCs [16,18]

 1,045  Proline  hMSCs, HLCs [28,33]

 1,130  Protein C–N stretch  hMSCs [28,33]

 1,265–1,280  Amide III  hMSCs, HLCs [18,28]

 1,320  CH deformation of proteins  hMSCs [34,35]

 1,371  CH3 stretching related to cell membrane lipids  hMSCs, HPCs, HLCs [28,36]

 1,436–1,440  CH3 deformation related to cell membrane lipids  hMSCs, HPCs [28,36]

 1,448  CH deformation related to cell membrane lipids  hMSCs, HLCs [28,36]

 1,544  Amide II  hMSCs [17,37]

 1,573  Guanine, adenine, TRP (protein)  hMSCs, HPCs [38]

 1,602  C=C bending of phenylalanine  hMSCs, HPCs, HLCs [17,18]

 1,685  Amide I  HPCs [39,40]

HPCs, hepatic progenitor cells; HLCs, hepatocyte-like cells; hMSCs, human mesenchymal stem cells; SERS, surface-enhanced Raman spectroscopy; 
TRP, tryptophan
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minimizing potential side effects. Ultimately, addressing long-
term stability and ethical concerns ensures strict regulatory 
standards and ethical considerations for the clinical application 
of cell therapies. In this study, machine learning-based SERS 
demonstrated high accuracy in monitoring the differentiation 
of hMSCs into HPCs and HLCs, highlighting its potential in 

automating and managing the quality control of cell therapy 
production for clinical applications. The high accuracy observed 
is attributed to the use of well-established and validated differ-
entiation protocols from previous studies [ 23 ]. Our differentia-
tion model showed near-complete differentiation into HLCs by 
day 14, confirmed by albumin immunofluorescence imaging. 

Fig. 4. Distribution graphs of Raman data for the secretions and basal medium after cell culture for (A) hMSCs, (B) HPCs, and (C) HLCs separated by PC-LDA. Receiver operating 
characteristic (ROC) curves and respective area under the curve (AUC) values for (D) human MSC cultured secretion (hMSCsS) versus MSCB, (E) HPCsS versus S1B, and 
(F) HLCsS versus S2B as a function of the number of PCs used.

Fig. 5. Utilization of SERS signals for monitoring the differentiation process from hMSCs to HPCs and from HPCs to HLCs. Overlapped spectra by day during HPC differentiation: 
(A) overlapped spectra, (B) data distribution from PC-LDA, and (C) confusion matrix derived from PC-LDA. Overlapped spectra by day during HLC differentiation: (D) overlapped 
spectra, (E) data distribution from PC-LDA, and (F) confusion matrix derived from PC-LDA.
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Although the Raman patterns obtained in this study were vali-
dated with high differentiation rate samples, the method holds 
major limitations for reverse-tracing differentiation rates. DA 
results obtained from SERS were based on signals from secre-
tions collected after cell culture, rather than directly from the 
cells. The base medium on the culture dish was replaced every 
few days, and the collected secretions were transferred to the 
SERS detection chip for spectral signal collection during this 
process. Given that cells concurrently undergo culture and dif-
ferentiation during these intervals, deriving differentiation rates 
influenced by accumulated secretions poses significant chal-
lenges and limitations in measuring specific parameters. Using 
systems such as flow cytometry that effectively measure cell 
differentiation rates in parallel, these limitations can be over-
come, enabling evaluation of the significant strengths of AI-based 
SERS analysis in future studies. However, there are emerging 
concerns regarding the influence of environmental factors on 
diagnostic technologies based on Raman spectral patterns, rather 
than on diagnostic methods that utilize specific binding proper-
ties, such as immunoassays. Notably, spectral patterns are formed 
from substances present in liquid secretions and can be altered 
by variations in cultivation conditions or subtle environmental 
changes. For instance, factors such as changes in composition 
during the cell culture process, metabolic rates associated with 
different cell types, or environmental conditions such as tem-
perature and pH can affect the composition of biomaterials in 
liquid secretions. This issue may be addressed by building a data-
set through repeated testing under various environmental condi-
tions, enhancing the patterns for monitoring cell differentiation, 
and diminishing the influence of external factors on spectral 
forms. Therefore, a remaining challenge is to establish the validity 
of this diagnostic technology across diverse experimental condi-
tions to improve the generalizability of its performance.

  In Fig.  3 A to C, the spectra that are difficult to distinguish 
by visual inspection were classified with the assistance of AI 
algorithms. Furthermore, since the peaks contributing to the 
classification were influenced by data from multiple regions, 
there are limitations in explaining diagnostic evidence based 
solely on specific peaks assigned as biomarkers. Determining 
which biomarkers contribute to the culture and differentiation 
may be feasible through more refined sampling or purified 
samples; however, deep experimental design is required to 
secure nanometer-level biomarker candidates and perform 
precise evaluations. To ensure reliability within the data, cross-
validation was conducted as shown in Fig.  3 F, wherein a portion 
of the spectra from the training data was separated into a test 
set for iterative evaluation. While this approach minimized the 
errors of overfitting and achieved high classification accuracy, 
leveraging the data to gain new insights in the context of stem 
cell differentiation research remains challenging.

  Further scientific development on machine learning-based 
SERS for cell transplantation and therapeutic effects in vivo will 
be reported in future studies. This study conducted AI analysis 
on SERS signals derived from metabolic products of differen-
tiating hepatic lineage cells in vitro. Following in vivo trans-
plantation of liver cells, changes in metabolic products are 
anticipated to be reflected in the blood. In previous studies, 
kidney injury can be monitored using blood and urine samples 
[ 15 , 16 ], and kidney transplant rejection can be diagnosed with 
high accuracy using clinical patient-derived samples containing 
various factors [ 19 ]. The differences in Raman signals from 
patients, along with various clinical environmental variables, 

were resolved by applying machine learning algorithms that 
isolate distinguishing patterns between the disease and control 
groups. Furthermore, ischemic liver failure biomarkers can also 
be diagnosed via SERS, and hMSC-derived HPCs exhibit effec-
tive homing to the liver [ 23 ], fostering optimism for positive 
in vivo results in the future. However, because enhanced Raman 
signals are particularly sensitive to chemical environments, 
patterns that distinguish between disease and control groups 
can potentially be obscured by noise from other chemical fac-
tors. Particularly in clinical environments, various variables 
can influence Raman signals, so it is crucial to understand these 
methodological limitations and carefully consider aspects such 
as spectral data preprocessing and the risks of overfitting. For 
clinicians, if SERS assessments are performed based on blood 
obtained from patients with liver disease undergoing pharma-
cotherapy, spectra derived from the drugs may be interpreted 
as evidence of the disease. This poses a challenge to generalizing 
label-free Raman-based diagnostics. The design of an experi-
mental plan that allows for a meticulous observation of clinical 
signals from spectra obtained in in vitro models and well-
controlled preclinical animal models will be key to accelerating 
the establishment of clinical efficacy. Additionally, since the 
genes of the MSCs obtained from each clinical patient differ, 
variations in metabolic products derived from stem cells during 
the culture and differentiation processes can lead to differ-
ences in signals. An evaluation of interpatient variation is also 
necessary.

  To monitor cell differentiation, we integrated a structure 
that enhanced Raman signals while filtering nanobiomarkers, 
a Raman spectroscopy technique for acquiring label-free chem-
ical signals, and AI algorithm-based DA. Evidence for differ-
entiation was observed in cell culture secretions, where filtering 
targeted nanometer markers minimized signal variation in the 
data. Furthermore, the distinct patterns relevant to differentia-
tion in the spectra derived from nanometer biomarkers were 
identifiable by machine learning algorithms. This approach was 
enabled by the convergence of nano, spectroscopic, and AI 
technologies, leveraging a complementary synergy of their key 
features. Such a diagnostic platform offers engineering advance-
ments when utilized in clinical settings. The SERS chips used 
in this study are fabricated on silicon wafers and can reduce 
measurement costs through unit chip optimization processes 
such as large-scale production and dicing. Furthermore, the 
commercialization of a motorized Raman system enables the 
automation of spectral signal acquisition. As no additional pre-
treatment other than spot application on the SERS chip is 
required, it provides a user-friendly system that can be imple-
mented in clinical environments. Given that it is a platform 
capable of diagnosis through AI analysis, it is expected to be a 
technology that allows users easy access to the results.   

Conclusion
  In summary, we developed a technology for the rapid monitoring 
of cell culture and differentiation using a single drop of secretion 
by acquiring SERS signals and applying AI evaluation methods 
for nanobiomarkers. A sensing chip capable of selectively filter-
ing nanobiomarkers and obtaining SERS signals was fabricated 
based on an array structure of Au-ZnO nanorods. Additionally, 
hepatic lineage cells (hMSCs, HPCs, and HLCs) were differenti-
ated and cultured, and their secretions during these processes 
were acquired as liquid samples for SERS signal collection. 
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Surface-enhanced Raman spectra were obtained in the range of 
350 to 2,400 cm−1, consisting of 946 steps of biomarker informa-
tion. The spectra of markers trapped in the nanoporous space 
were presented with peak assignments, indicating their origin 
from biological materials. For DA of each cell differentiation 
stage, the machine learning algorithm PC-LDA was applied for 
spectrum analysis, confirming data grouping. The accuracy of 
monitoring the cultures of hMSCs, HPCs, and HLCs was 96.3%, 
98.8%, and 98.8%, respectively. During the differentiation of 
hMSCs to HPCs and HPCs to HLCs, surface-enhanced Raman 
spectra were obtained on days 2, 4, and 7, and DA was performed 
using machine learning algorithms. Clear grouping of data by 
day during the differentiation process was confirmed. These 
results demonstrate that monitoring of hepatic lineage cell dif-
ferentiation and culture can be assessed with high accuracy 
using a single drop of secretion.   
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