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ABSTRACT: To diagnose renal function using a biochip capable
of detecting SERS and to assess Raman measurements taken from
a bilateral renal ischemia model and the feasibility of early
diagnosis was done. After generating a bilateral renal ischemia rat
model, blood and urine were collected. After confirming the
presence of renal injury and function, liquid drops were placed
onto a Raman chip whose surface had been enhanced with Au-
ZnO nanorods. SERS biomarkers that diffused into the nanogaps
were selectively amplified. Raman signals varied based on the
severity of the renal function, and these differences were confirmed
statistically. These results confirm that renal ischemia leads to renal
dysfunction and that surface-enhanced Raman spectroscopy and a
machine learning algorithm can be used to track signals in the urine from the release of SERS biomarkers.

■ INTRODUCTION
Acute kidney injury (AKI) refers to the clinical observation of
a rapid decrease in renal function, which results in the
accumulation of waste products in the serum and in the body’s
inability to maintain electrolyte, acidity, and water homeo-
stasis. AKI may arise because of a variety of complex causes.1,2

In particular, the kidney is highly sensitive to ischemia insult,
and ischemia is a common cause of AKI.2,3 In humans, acute
kidney disease often presents bilaterally as blood supply
leading to both kidneys is interrupted simultaneously.4 Early
diagnosis of AKI and its risk factors may enable preventative
interventions, and reversal of symptoms before permanent
kidney damage is sustained may prevent the development of
chronic progressive kidney disease. In standard clinical
practice, AKI is diagnosed according to its functional effect
on glomerular filtration; high blood urea nitrogen (BUN), high
serum creatinine (sCr), and a low BUN-to-creatinine ratio are
biomarkers for AKI that can be detected using common
commercial assays. On the basis of a rapid (within hours)
increase in sCr levels and decrease in urine output, AKI
severity is classified either between “Risk” and “End-stage
kidney disease” on the RIFLE (Risk, Injury, Failure, Loss of
kidney function, and End-stage kidney disease) criteria5 or as
one of three stages of severity in the AKIN (Acute Kidney
Injury Network) criteria,6 which have recently been revised
into the KDIGO (Kidney Disease Improving Global Out-
comes) criteria.2,7

Despite their widespread use as measures of glomerular
filtration for the diagnosis of AKI, creatinine and urine outputs
are lagging indicators of kidney damage, and thus they are

poorly suited in the early detection of AKI.8 In addition, sCr
measurements may be confounded9 and thus may not
accurately reflect glomerular filtration rate during acute
ischemia.

Depending on their size, biomarkers such as biopsy tissue
(∼1 mm diameter), cells (∼tens of μm), erythrocytes (∼8
μm), bacteria (∼1 μm), viruses (∼400 nm), exosomes (several
to tens of nm), proteins, or small biomolecules such as nucleic
acids and cytokines are typically targeted for general diagnosis
in human tissue and blood.10−12 Various biomarkers are mixed
in liquid biological byproducts such as blood or urine, and
nanometer-scale markers such as small molecule targets are
also included in small amounts in liquid samples. Blood that
enters the kidneys through the renal artery passes through a
bundle of thin capillaries called the glomerulus and secretes
water, electrolytes, and various waste products into the
Bowman’s capsule. Large particles in the blood pass through
the glomerulus, while smaller plasma components are pushed
out of the glomerulus and into the Bowman capsule by osmotic
pressure. Inorganic salts, amino acids, glucose, urea, and water,
which have small molecular weights, are filtered, but substances
with high molecular weights, such as erythrocytes, proteins,

Received: August 19, 2022
Accepted: November 28, 2022
Published: December 8, 2022

Articlepubs.acs.org/ac

© 2022 American Chemical Society
17477

https://doi.org/10.1021/acs.analchem.2c03634
Anal. Chem. 2022, 94, 17477−17484

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
U

L
SA

N
 C

O
L

G
 O

F 
M

E
D

IC
IN

E
 o

n 
D

ec
em

be
r 

20
, 2

02
2 

at
 0

8:
12

:3
1 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sanghwa+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jeongmin+Oh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kwanhee+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Minju+Cho"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bjorn+Paulson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jun+Ki+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.analchem.2c03634&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c03634?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c03634?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c03634?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c03634?fig=abs1&ref=pdf
https://pubs.acs.org/toc/ancham/94/50?ref=pdf
https://pubs.acs.org/toc/ancham/94/50?ref=pdf
https://pubs.acs.org/toc/ancham/94/50?ref=pdf
https://pubs.acs.org/toc/ancham/94/50?ref=pdf
pubs.acs.org/ac?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.analchem.2c03634?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/ac?ref=pdf
https://pubs.acs.org/ac?ref=pdf


and fats, cannot be filtered.3,8 Therefore, it is expected that
monitoring of biomarkers in the blood will correlate with non-
invasive monitoring of biomarkers in the urine, and early
diagnosis of renal dysfunction may also be possible through
changes in concentrations of nanometer-scale biomarkers.

Indeed, several biomarkers, including neutrophil gelatinase−
associated lipocalin (NGAL), cystatin C, kidney injury
molecule-1 (KIM-1), tissue inhibitor of metal-loproteinases-2
(TIMP-2), interleukin-18 (IL-18), and insulin-like growth
factor-binding protein (IGFBP7), have been proposed for early
detection of AKI.8,13 In humans, these early biomarkers,
especially NGAL, can be used to make diagnoses 2 to 3 days
prior to those based on sCr.14 At present, commercially
available kits for the detection of NGAL biomarkers are based
on chemiluminescent immunoassays, require microliters of
plasma to hundreds of microliters of urine, and produce results
within 15 to 35 min.15 While suitable for clinical use, these
assays are, by design, unable to detect signals of novel or
unanticipated biomarkers.15,16

Present (optical) technologies for detection of biomarkers
often require selectively separating nanometer biomarkers from
the liquid sample in which biomarkers of various sizes and
shapes are found, and amplification technology is required
because the absolute volume of SERS biomarkers is small.
Although polymerase chain reaction (PCR) technology is used
for the amplification of genetic information, a technology for
amplifying optical signals through surface enhancement Raman
technology is emerging17,18 and promises an approach to
increase sensitivity without the primers required for PCR. In a
previous study, biomarkers were selectively filtered out using a
surface-enhanced Raman chip with gold-zinc oxide (Au-ZnO)-
based nanometer porosity, and Raman signals were amplified
using localized surface plasmon resonance.19−21 It was
confirmed that the Raman signal amplified from even a small
(5 μL) droplet has high reproducibility and can be used to
diagnose kidney injury from urine. In particular, in the case of
kidney injury, the damage was caused by an increase in
intrarenal pressure induced by ureteral obstruction, and the
diagnosis basis was secured by the detection of collagen by
destruction of tubular cells through surface-enhanced Raman

spectroscopy (SERS).19 However, in order to monitor a
patient’s health and manage AKI safely, a technology that can
evaluate kidney function more sensitively and earlier is
required.

Automated data analysis through artificial intelligence (AI)
has been attracting attention to Raman signal analysis owing to
the recent improvement in high-sensitivity signal acquisition
technologies based on SERS and computer-based analysis.22 In
particular, Raman signal analyses for biological samples have
significant data variance compared to those for crystalline
samples, and since the biomaterials present in biological
samples occupy major Raman peaks, contrast enhancement is
required to detect sensitive changes. Thus, a variety of machine
learning techniques have been introduced to extract mean-
ingful diagnostic signals from SERS data.22 Artificial
intelligence methods of nonlinear classification, such as deep
neural networks, support classification based on arbitrarily
complex patterns and have been applied in the detection of
metabolites from SERS data.23 However, these classifiers are
black boxes, and care must be taken to ensure that training
data is without bias and representative of clinical samples.
Other classification methods based on SERS, such as support
vector machines (SVMs), which are desirable for their
deterministic properties, have enabled point-of-care diagnosis
in ophthalmology.24 Although SVMs are resistant to over-
fitting, their application in SERS benefits from careful kernel
selection.22

A similarly deterministic method is discriminant analysis
(DA), which determines a hyperplane that minimizes the
difference in data between different classes while minimizing
the in-class variance.22 While DA cannot be applied to raw
Raman spectra owing to high variable collinearity and a large
number of data dimensions relative to measurements, DA may
be combined with other techniques, which reduce data
dimensionality along the dimensions that maximize correlated
variance. Principal component analysis (PCA) followed by DA
has served this function in the detection of cancer,25 and DA
combined with partial least squares (PLS-DA)26 has been
observed to outperform PCA in discrimination tasks.27 Thus,

Scheme 1. Scheme of the Renal Ischemia Diagnosis Experiment Using SERS Detection and Machine Learning Algorithma

aBUN, blood urea nitrogen; Au-ZnO, gold-zinc oxide; BP, blood pressure, CREA, creatinine.
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research is required that derives hidden sensitivity by applying
DA tools known in machine learning to Raman analysis.

In this paper, using a Au-ZnO nanostructure-based SERS
chip and amplifying their signals, spectral signals were obtained
to evaluate renal function from the blood and urine of bilateral
renal ischemic rats. SERS-based renal function evaluation was
performed through statistical processing of principal compo-
nent analysis (PCA) and by using a machine learning
algorithm to extract meaningful Raman signals.

■ EXPERIMENTAL SECTION
Animal Preparation and Surgical Procedure for

Bilateral Renal Ischemia Models. All animal experiments
were approved by the Institutional Animal Care and Use
Committee of the Asan Institute for Life Sciences, Asan
Medical Center (2020-12-111), under the laws of the Republic
of Korea. Six-week-old female rats (Sprague−Dawley rat,
Orientbio, Korea) were used in this experiment. The rats were
divided into two groups: six for the ischemic kidney model and
six for the control group. The rat was anesthetized with 30 mg/
kg Zoletil (Virbac, France) and 5 mg/kg Rompun (Xylazine,
Bayer, Germany). The fur of the abdomen region was removed
with an electric razor and hair-removal cream. The defurred
abdomen was sterilized with 70% ethanol and a povidone-
iodine stick. Urine and blood samples were collected before
surgery. The urine sample was collected by gently applying
pressure to the lower abdomen. Blood samples were drawn
from the tail vein. After the sample collection, the operator
opened up the abdominal cavity. For the control group, the
abdominal cavity was closed with 5−0 suture thread (Ethilon,
USA). For the ischemic renal group, both kidneys were
exposed and ligated with suture thread. Ligation was confirmed
with visual examination of the color of the kidneys as shown in
Scheme 1. The abdominal cavity was closed with suture thread,
and the rats were left free in the cage for 6 h. After 6 h, blood
and urine samples were collected using the same method with
pre-ligation. The sutured abdominal cavity was re-opened, and
the ligated kidney was freed by removing the suture thread.
Perfusion of blood was performed by injecting phosphate-
buffered saline to the heart. The rat was euthanized in deep
anesthesia as perfusion drew blood out of the system.

Hematoxylin−Eosin Staining for the Kidney Damage
Evaluation. Bilateral kidneys were collected from normal and
ligated kidney rats and then fixed in 4% buffered
paraformaldehyde for 24 h. The paraformaldehyde-fixed
kidneys were aspirated, embedded in a paraffin block, and
sliced into a 3 μm thickness for staining. The slice was stained
with hematoxylin−eosin (H&E) for the morphological
evaluation of the injury. Stained H&E slides were analyzed
on a microscope (Olympus CKX41, Japan), and images were
taken at 20× and 40× magnification with a digital camera
(Olympus DP73, Japan) and Cellsens software (Olympus,
Japan).

Postsurgical Procedure for the Collection of Blood
and Urine Samples. The collected whole blood samples
were allowed to clot at room temperature for 30 min and
centrifuged at 3000 rpm for 10 min, and the upper serum was
separated. Blood urea nitrogen (BUN) was analyzed from
serum with a clinical analyzer (HITACHI Clinical Analyzer
7180, Japan). Fresh urine was immediately taken for the
creatinine level evaluation. Serum and urine creatinine were
also analyzed with the clinical analyzer (HITACHI Clinical
Analyzer 7180, Japan).

Synthesis of ZnO Nanostructures and the Deposition
of Au. To amplify the Raman signals via the SERS substrate,
vertically aligned ZnO nanorods were grown using hydro-
thermal synthesis as a nanostructural framework. The synthesis
solution for the ZnO nanostructure was prepared by dissolving
10 mM zinc nitrate hexahydrate (Sigma Aldrich Co., St. Louis,
USA) and 0.9 mL of ammonium hydroxide (Sigma Aldrich
Co., St. Louis, USA) in 30 mL of deionized water. The silicon
(Si) wafer (LG SILTRON INC., Korea) was then immersed in
the aqueous solution for 50 min in an oven set to 90 °C. The
grown nanorods on Si substrates were 400−600 nm in length
and 50 nm in diameter. A 200 nm thickness of Au was coated
on ZnO nanorods using a thermal evaporator (Alpha Plus Co.,
Korea), and the morphology of the nanostructure was analyzed
by a field-emission scanning electron microscope (FE-SEM, S-
4700, HITACHI, Japan).

Raman Spectrum Acquisition and Post-signal Pro-
cessing. The urine and blood drops are delivered to the SERS
chip in their raw form, without incubation or pretreatment, and
are stored in a clean bench environment at approximately 25
°C. The 5 μL drops of serum and urine obtained from bilateral
renal ischemic animals were placed on a SERS chip and left for
30 min to allow the biomarkers time to infiltrate the
nanocavities of the SERS chip.

The chips were then loaded into a microscope (IX-73,
Olympus, Japan) and analyzed using a Raman spectroscopy
system (FEX-INV, NOST, Korea) with a 785 nm diode laser
as the excitation source attached to the microscope. As in
Scheme 1, after confirming the droplet boundary with a
microscope during Raman measurement, the laser point
position was checked within a distance of 50 μm to obtain a
Raman signal. The droplet interface was confirmed with an
image through a 40× objective lens (LUCPLFLN, OLYMPUS,
Japan), and a Raman signal was obtained using a 1.2 mW laser
power and a 100× objective lens (UPLXAPO, OLYMPUS,
Japan). For spike removal and noise removal, a single spectrum
was obtained by accumulating for 10 s each. The Raman
spectra ranged from 450 to 2450 cm−1, with a spectral
resolution of 1 cm−1. By measuring 10 points on each rat,
Raman signals were analyzed using 40 points per case. The
measured raw Raman spectrum was post-processed through
3rd-order polynomial fitting to remove background noise and
smoothed using the Savitzky−Golay method. Assignment to
the peaks of the post-processed signal was performed as shown
in Table 1.

Statistical Analysis and Application of Machine
Learning Algorithms to Raman Spectral Data. PCA was
introduced for dimensionality reduction and statistical analysis
of the value variable according to the identity of the Raman
spectrum, peaks, or energy shift. The entire spectral range was
used as a variable, consisting of 2000 points from 450 to 2450
cm−1 with a 1 cm−1 step. To secure Raman spectroscopy-based
diagnostic criteria, partial least squares (PLS)-based DA, one of
the machine learning algorithms, is applied. From the PLS-DA
application, the data score distribution and confusion matrix in
normal and ischemic animal models were confirmed. Receiver
operating characteristic (ROC) curves were obtained by
measuring sensitivity and specificity in blood and urine,
respectively, and the diagnosis rate was obtained from the area
under the ROC curve (AUC). The PCA and PLS-DA were
conducted using XLSTAT 2019 software.
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■ RESULTS AND DISCUSSION
Validation of Bilateral Renal Ischemia and Kidney

Dysfunction. To induce renal ischemic failure with uremia,
bilateral renal vascular ligation was performed.28 A model of
acute renal failure was induced by renal ischemia in Sprague−
Dawley rats, as shown in Scheme 1. In the case of kidney
ligation, darkening due to ischemia was observed as shown in
Scheme 1. The blood vessels leading to the kidneys were
ligated for 6 h, with blood and urine samples collected before
and after ligation, and the kidneys were observed by histology.
BUN and creatinine values were measured in blood and urine,
and renal function performance was confirmed by comparing
the values in urine and blood obtained from the same rat
before ligation. Based on this, histopathology and biochemical
examination for Raman signal results and a machine learning
algorithm-based analysis were prepared.

As shown in Figure 1, ligation resulted in 200 μm diameter
pathologies observed under H&E-stained histology in both left
and right cortices and medulla, when compared to a non-
ligated control. As in other bilateral ischemia animal
models,29,30 global hemorrhage is seen in the cortex and
medulla in red in ischemic animals, unlike in normal. Even
though saline was used to perfuse the tissue during the
acquisition process, red blood cells were trapped around the
glomerulus and between the tubule cells. These red blood cells
gave the H&E slide a strong red color. Furthermore, while
congestion (black arrows) appears locally in Figure 1b,31 there
were no remaining red blood cells in the tissue in the case of
the normal group. The tissue image shows that the blood
vessels in both the left and right kidney were well ligated. This
caused kidney damage due to ischemia, which shows that the
kidney function was blocked during the blood and urine
acquisition process.

Concomitant renal dysfunction was confirmed by observa-
tion of BUN and blood creatinine concentrations, which both
increased significantly over the period of ligation. In other
studies, the values of BUN and creatinine in normal rat serum
were 15−21 and 0.2−0.8 mg/dL, respectively.32,33 The average
levels of BUN and sCr before ligation in Figure 1e were 18.2 ±
2.7 and 0.47 ± 0.03, respectively, and well-distributed within
the normal range. These values were 52.2 ± 6.7 and 1.11 ±

0.15, respectively, after 6 h of ligation. As such, the serum urea
and creatinine levels show a dramatic increase, and the results
are similar to the absolute and change values in other bilateral
renal injury animal models. As shown in Figure 1f, the urine
creatinine level slightly increased from 7.7 ± 2.7 to 9.4 ± 3.2.
This is a significantly lower change (1.2 ± 0.1 times) than the
increase rate of sCr by more than two times (2.4 ± 0.3 times).
With this numerical change, it is difficult to evaluate kidney
function using the level of creatinine in the urine alone.

Surface-Enhanced Raman Spectra Acquisition and
Peak Assignment. Single drops of blood and urine collected
from the renal ischemia model were deposited onto Au-ZnO
nanoparticle-coated Si chips, and the resultant Raman spectra
were measured under illumination at 785 nm, as shown in
Figure 2. For amplifying Raman signal, a skeletal structure
providing nano-porous was made by growing ZnO nanorods.
The gold was coated on the ZnO nanorods as a metal medium
that can enhance surface plasmon resonance during the Raman
signal acquisition process (Scheme 1 shows an electron
microscope image). Au-ZnO nanostructures provide tens of
nanometers of porosity, and blood and urine dropped on these
SERS chips diffuse into the porous structure. When the
diffused area is checked through a microscope, the laser is
positioned, and a spectral signal is acquired; an enhanced
Raman signal is acquired through plasmon resonance on the
surface of the SERS biomarkers and gold nanoparticles. The
average spectrum of the enhanced Raman signal was measured
in blood and urine (the thick line is the average, the same color
shade is the standard deviation). This is the result of measuring
40 points on test samples from four animals (Figure 2).

Table 1. Assignments of Peaks Observed in Raman Spectra

peak (cm−1) assignment

490 glycogen34,35

530 S−S disulfide stretch in proteins34,36

583 amide-VI in serum37,38

622 C−C twisting mode of phenylalanine34,36

650 C−C twisting mode of tyrosine37,38

712 hypoxanthine in serum38,39

790 U, T, C (ring breathing modes in the DNA/RNA bases)36,40

835 tyrosine36,40

890−930 glycogen and C−C stretching of glucose36,41

1000 symmetric ring breathing of phenylalanine19,21,36

1030 C−H bending of phenylalanine19,21,36

1140 C−N stretching in D-mannose35,39

1200−1350 C−N stretching and N−H bending of amide III40,42

1365 tryptophan35,36

1445 CH3, CH2 bending (lipids/cholesterol/proteins)35,43

1560 tryptophan35,36

1600 C�C bending of phenylalanine36,39

2120, 2170 CN stretching related vibration44,45

Figure 1. Evaluation of renal ischemia model production and
confirmation of renal function changes. (a, c) H&E staining of the
cortex and medulla of normal rats, and (b, d) left tissue images of
bilateral renal ischemia animals. (e) Measurements of BUN and
creatinine in rat serum before and after blood vessel ligation. (f)
Creatinine measurement in urine. Black arrows indicate congestion.
H&E, hematoxylin and eosin; BUN, blood urea nitrogen.
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Many notable peaks in the observed Raman shifts were
identified, and they are depicted as bars in Figure 2 with their
corresponding vibrational modes in Table 1. A peak was
assigned to SERS biomarkers such as amino acids of
phenylalanine (Phe) and tyrosine (Tyr), nucleic acids, and
proteins. Most notably, symmetric ring breathing and C−H
bending corresponding to Phe were observed at 1000 and
1030 cm−1, respectively. Plasma Phe is a known marker of
renal failure, as the metabolism of Tyr depends on kidney
function.46,47 The related peaks are separately indicated by
brown bars in Figure 2, but it is also difficult to determine the
diagnostic potential through visual graphs. In this study, the
Raman spectrum consists of the peaks from different markers
and the peaks from the amino acids listed above. In order to
secure the diagnostic performance and evidence of the Raman
spectrum obtained from the bilateral renal ischemia model, the
characteristics for each data point were determined by setting
the peak of the entire spectrum as a variable.

PCA of Raman Spectra for Liver Function Evaluation.
An initial PCA was performed on the observed Raman spectra
to reveal the orthogonal principal components (PCs) of the
spectrum that most efficiently capture the correlated spectral
variance between measurements. For example, the first PC
(PC1) captures the largest variance, the second PC (PC2)
captures the second-largest variance, and so on. The Raman
spectra for each measurement were then decomposed into the
amplitudes of their PCs and graphed in PC space. Graphing
each observation by its PCs often allows data to be easily
clustered and thus categorized by diagnosis. As depicted in
Figure 3, when PCs were calculated over the full dataset, the
Raman spectra of the pre- and post-ligation blood and urine
samples were not clearly separated in the PC space of the first
three principal components, despite the first PC accounting for
63% of the variability in the data, the second PC accounting for
9% of the variability in the measurements, and the third PC
accounting for 4% of the variability. The variability from PC1
to 50 is shown as a diagram in Figure 3b, and the variability
with the meaning of the distance that separates data in PC
space is dominated by the previous few values. Grouping was

slightly improved but still poor when PC was calculated for
blood and urine samples independently, as shown in Figure
3c,d.

Figure 3e,f shows the results of PCA by extracting the peak
data for Phe and Tyr from blood and urine. These results
reflects the aforementioned correlation between renal function
and amino acid. There was also no data separation in PCA as
there was no visible difference.

Applying Machine Learning Algorithms for Liver
Function Evaluation. PLS-DA is a technique that generalizes
PLS regression to the case of discrete classes for supervised
clustering26 and is known to outperform PCA in discrim-
ination tasks requiring reduction of dimensions.27 For AI-based
automated diagnosis, it is necessary to increase the clarity of
the diagnostic basis from a lot of data through machine
learning, and the efficiency of diagnosis depends on the data
separation algorithm applied. In the biomedical field, analysis
of Raman signals has been analyzed with various machine
learning algorithms,22 and in this study, the diagnostic
performance for machine learning was optimized through
PCA-PLS analysis.

For PLS-DA, the application of Raman signal data in Figure
2 is based on 2000 variations in the range of 450 to 2450 cm−1

(with a spectral resolution of 1 cm−1). If 2000 variables for a
single data point are measured at ‘m’ points for ‘n’ animals, the
PLS-DA for 2000 × n × m is applied. If machine learning is

Figure 2. Average Raman spectra for the bilateral renal ischemia
model. The standard deviation is represented by the shaded area
around the solid line. Table 1 indicates mainly assigned peaks, and
brown bars indicate peaks related to phenylalanine and tyrosine.

Figure 3. (a) Principal component analysis of the pre- and post-renal
ligation Raman spectra captures sample variability but does not
adequately segment it by ligation status. (b) Variability of units up to
PC 50; inset is the log scale. (c, d) PCA of Raman spectra in blood
and urine, respectively. (e, f) PCA of blood and urine calculated only
from extracted Phe and Tyr Raman peak values. PCA, principal
component analysis; Phe, phenylalanine; Tyr, tyrosine.
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performed while increasing n and m, it takes up a lot of
computer resources. In this study, after dimensional reduction
through PCA, PLS-DA was implemented with the PC score as
a variation. Among the PC values, the top 50 of variability were
analyzed as variables, and the weight of the PC values is well
shown in Figure 3b.

Applying PCA-PLS-DA as shown in Figure 4a,b, segmenta-
tion between preclinical samples was noticeably improved, and
the resulting classification was highly predictive of ischemic
renal function, as shown in Figure 4. In particular, pre- and
post-ligation urine samples were clearly distinguishable via just
the first two components, and the distribution and confusion
matrix showed 91% of samples correctly classified with a false-
positive rate of 9.7% and a false-negative rate of 7.8%, or a
sensitivity of 93% and specificity of 89%. As shown in Figure
4a, in the data projected onto the PCA-PLS-DA1 and 2 planes,
the data from the blood of pre- and post-ligation samples are
superimposed. This is diagrammed in an optimized direction
when there are four discriminant boundaries, and when PLS-
DA is applied to separate blood and urine, separation is
achieved as shown in Figure 4c. The blood PCA-PLS-DA
scores were observed to drop during induced ischemic renal
dysfunction with overlap in the error bounds, while the urinary
PCA-PLS-DA scores rose enough for the two samples to not
be overlapped, with 99.3% AUC for blood and 99.9% AUC for
urinary assays. Optimization of the AUC value obtained
through PCA-PLS-DA is dependent on the number of PC
datasets included in the PLS-DA. The inset in Figure 4d shows
the AUC value output according to the number of PCs

included, and we confirmed that both blood and urine
converge to the optimized value of 50.

Since urine and blood are collected separately during the
sampling process, the value obtained from these separated
AUCs is close to a direct measure of renal function.
Nevertheless, the following trends were confirmed by analyzing
Raman data of biomarkers in urine and blood together, as
shown in Figure 4a,b. The data points in the PCA-PLS-DA
space of Figure 4a show that blood and urine were well-
separated in the case of pre-ligation, but they tended to
approach each other after kidney injury. Considering the
circumstances, such as the kidney’s function to filter waste
products from the blood into urine and the occurrence of
hematuria owing to kidney dysfunction, the trend towards a
closer approximation of these data clearly demonstrates a
decline in renal function. Since there is a correlation between
renal function and Phe and Tyr metabolism, statistical analysis
was performed on the peak region related to the amino acid as
shown in Figure 4e. For analysis and contrast of Phe and Tyr
using a machine learning algorithm, the data distribution
corresponding to amide III is shown in Figure 4f. The spectral
peak centers of Phe and Tyr were located at 622, 650, 1000,
1030, and 1600, and the range corresponding to ±10 cm−1 of
each peak was designated as a variable for statistical analysis.
Amide III was assigned a range of 1200−1350 cm−1 as a
variable for statistical analysis, and peaks corresponding to Phe,
Try, and Amide III are underlined in Table 1. Comparing
Figure 4e and 4f, Phe and Tyr signals have a large contribution
to the Raman analysis for the evaluation of renal function.

Figure 4. Evidence of kidney function evaluation through the use of a machine learning algorithm of PCA-PLS-DA. (a) Whole data distribution in
PCA-PLS-DA1 and 2 planes and (b) confusion matrix. (c) Data distribution at the boundary of blood and urine, separately, using the same
machine learning algorithm, and (d) ROC curve and AUC value for separated data in urine and blood. Inset in panel (d) is the AUC value change
according to the number of PCs included in PLS-DA. PCA-PLS-DA plane images based on spectral data corresponding to (e) Phe and Tyr peaks
and (f) amide III, respectively. PCA, principal component analysis; PLS, partial least squares; DA, discriminant analysis; ROC, receiver operating
characteristic; AUC, area under the ROC curve; Phe, phenylalanine; Tyr, tyrosine.
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Values corresponding to the spectral region that was analyzed
selectively may be contributed by other biomaterials in blood
and urine other than Phe and Tyr. Based on the correlation
between renal function and Phe/Tyr metabolism and the
contribution of Raman data, the evaluation of the renal
function of biomarkers through SERS is reasonable. Addition-
ally, using machine learning algorithms to analyze the entire
spectrum region allows for more accurate diagnostic criteria to
be found from a wider range of factors.

While not directly comparable due to the preclinical nature
and the different timing of these assays, the sensitivity and
specificity obtained compare favorably to some AKI assays
developed based on other known kidney biomarkers, such as
the 2 h urine NGAL immunofluorescent assay, which showed
sensitivity of 0.82 and specificity of 0.90 for prediction of AKI
in small clinical trials (N = 100),48,49 or the serum cystatin C-
based assay, which showed clinical sensitivity and specificity of
0.86 and 0.82, respectively.50 Unlike previous AKI assays, the
present sensing chip does not target a specific known
biomarker and thus has the potential to be more accurate
and more predictive than assays based on single biomarkers.
However, machine learning techniques are of limited
applicability beyond their training regime, and so clinical
translation of the present SERS- and machine learning-based
techniques for early diagnosis of AKI depends on collecting a
wide variety of samples for calibration and training. Future
studies are required to examine the clinical relevance by
accumulating data through extension to animal models with
unilateral kidney injury animal models and application to renal
disease samples from patients.

■ CONCLUSIONS
In summary, surface-enhanced Raman signals for biomarkers
were obtained from blood and urine for renal function
evaluation, and Raman signals were classified according to
function using a machine learning algorithm. Blood and urine
samples were collected from rat animals with bilateral ischemia
and renal dysfunction. The kidneys were removed, histopatho-
logical analysis was performed, and it was confirmed that the
injury had developed in bilateral kidneys. BUN in serum was
measured, and sCr and urine creatinine were detected to
evaluate kidney function standards. For the detection of SERS,
a Au-ZnO-based SERS sensing chip having a nanoporous
structure was prepared. When blood and urine were dropped
and diffused into the nanoporous structure, and the Raman
signal was enhanced. It was confirmed that the peaks of the
Raman signal were derived from various biomaterials,
including Phe and Tyr. Data distribution and diagnostic
availability were reviewed through PCA for Raman signals, but
data were not separated. It was confirmed that renal function
evaluation was possible by grafting the PLS-DA mechanism,
one of the machine learning algorithms. Furthermore, when
measuring the renal function evaluation rate in blood and
urine, respectively, it showed an accuracy of 99.3% and 99.9%.

By utilizing Raman signal enhancement with the passive
characteristics of the SERS chip, we monitored and diagnosed
kidney function. Using the machine learning analysis
algorithms of PCA and PLS-DA, we confirmed that SERS
biomarkers in blood and urine can be used as diagnostic
criteria for kidney function. Phe and Tyr, unlike Amide III,
were confirmed to be factors that can be used to evaluate renal
function, but the accuracy was improved by using a larger
Raman signal region. Signal enhancement sensing of nano-

porous structures and the application of machine learning
algorithms are useful for evaluating kidney function that
requires multicomplex detection of various biomarkers.
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